EDUCATION BUILDING MECHANICAL CONTROLS REDESIGN

Group 3

Jay Brockmann

Luke Deobald

Tanner Deobald

Dacey Schentag

Overview

- Project Description
- Common Language
- Energy Saving Alternatives
- Alternative Evaluation
- Final Design
- Cost Estimate
- Conclusions
- Recommendations

(Rootsweb.ancestry, 2013)

Project Description

Client: U of S Office of Sustainability

Objectives:

- Analyze energy usage
- Assess improvements
- 15% energy reduction
- Constraints:
 - Use existing equipment
 - Delta Controls
 - Codes/Standards

(CopperTree Analytics, 2015)

Common Language

- HVAC: Heating, Ventilation, and Air Conditioning
- Mechanical Control System
- Dual Duct System
 - Hot Deck
 - Cold Deck
 - Outdoor Air
 - Return Air
 - Mixed Air
 - Exhaust Air

Current System

Four Separate HVAC Zones:

- Audio/Visual Room
- Quance Theatre
- Gym, Locker Rooms, Pool
- Penthouse/Main System

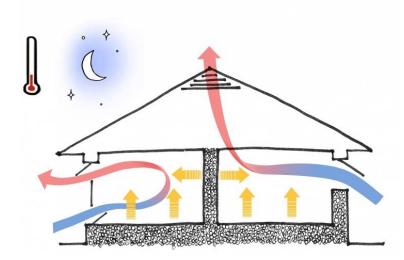
Energy Saving Alternatives

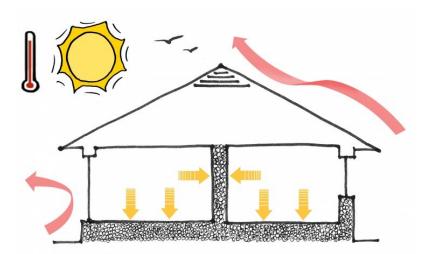
- Filter/Pressure Sensors
- Enthalpy Sensors
- □ CO₂ Sensors
- Nighttime Purge
- Optimum Start
- Set Point Adjustment
- Hydronics

Filter/Pressure Sensors

- Pressure sensors across filters connected to alarms
- Lower the set point on the alarms in order to change the filters more regularly
- Leads to reduced fan load
- Reduced energy consumption

Enthalpy Sensors

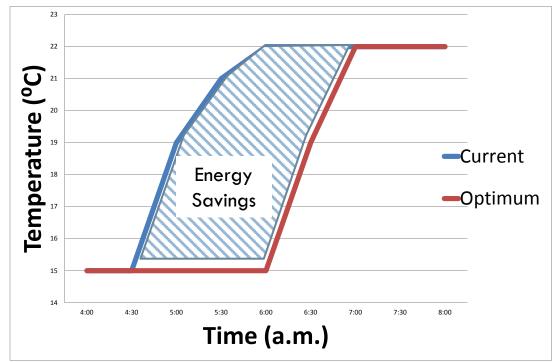

- Add sensors in strategic locations
- Accounts for humidity
- Heat/cool the air more effectively
- High efficiency system


CO₂ Sensors

- Add sensors in areas with large occupancy
- Accounts for number of people
- Adjusts temperature based on CO₂ sensors
- Less wasted energy

Nighttime Purge

- Open outside air dampers
- Delay operation of A/C
- Relevant during summer months



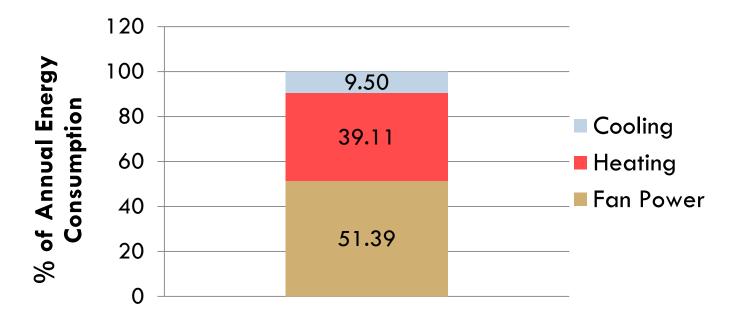
(Sustainability Workshop, 2011)

Optimum Start

- Delay HVAC start-up
- Based on outdoor air conditions
- Easy implementation

Set Point Adjustment

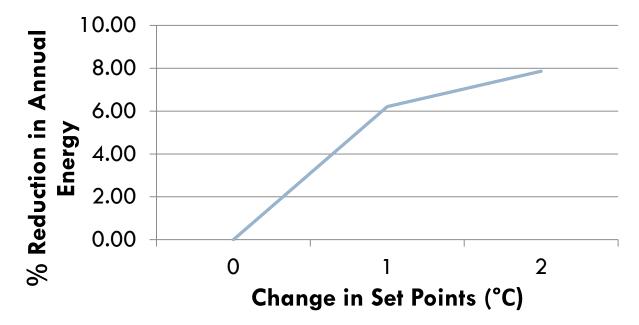
- Temperature:
 - Hot Deck
 - Cold Deck
 - Mixed Air
- □ Airflow:
 - Hot Deck
 - Cold Deck
 - Mixed Air



(Achr News, 2012)

Alternative Evaluation

<u>Alternatives</u>	Implementing Cost (10)	Maintenance (10)	Potential Savings (x3)	Difficulty of Analysis (.5)	Availability of Data (Pass/Fail)	Total
Filter/Pressure Sensors	8	3	3	7	Pass	27
Enthalpy	4	3	3	5	Pass	21
CO ₂ Sensors	3	8	6	5	Pass	34
Nighttime Purge	9	6	8	7	Pass	46
Optimum Start	9	9	7	7	Pass	46
Set Point Adjustment	10	10	8	7	Pass	51
Hydronics System	N/A	N/A	N/A	N/A	FAIL	N/A


- Model of current HVAC system
- 7,143 GJ annual HVAC energy consumption

Penthouse Energy Usage

Set Point Adjustment

2°C change yields 561.44 GJ reduction (7.86%)

Set Point Adjustment Energy Reduction

- Nighttime Purge
 - July and August
 - Run fans 2 hours
 - Delay HVAC until 11:00 am
 - 22.96 GJ annual energy reduction (0.32%)

Optimum Start

- Maximum conditioning time of 2 hours
- Start time based on outdoor air temperature
- 443.32 GJ annual energy reduction (6.21%)

Cost Estimate

Project Cost								
Cost Implementing Alternatives								
Alternative	Hours	Rate	Cost					
Set Point Adjustment	2.5	\$150.00	\$375.00					
Optimum Start	1	\$150.00	\$150.00					
Nighttime Purge	1	\$150.00	\$150.00					
Total	4.5	\$150.00	\$675.00					
Cost Group Design								
Group 3	344	\$116.00	\$39,904.00					
<u>Total Cost</u>			\$40,579.00					

Conclusion

• 14.39% total annual HVAC energy reduction

Reduction in Energy Consumption

Recommendations

- Apply alternatives to gym, locker rooms, pool
- \Box CO₂ sensor in gym
- Improved heat recovery schedule
- Optimum start in Quance Theatre
- Increased set point adjustment

Acknowledgements

- Darell Hart, Safety Consultant
- Margret Asmuss, Sustainability Coordinator
- □ Kathryn Theede, P. Eng., Energy & Emissions Officer
- □ Ken Coutu, P. Eng, Faculty Advisor

Questions?

References

- http://sustainabilityworkshop.autodesk.com/buildin gs/night-purge-ventilation
- www.coppertreeanalytics.com
- www.achrnews.com
- www.rootsweb.ancestry.com